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Abstract

In this paper we investigate the survival probability, θn, in high-dimensional statistical physical
models, where θn denotes the probability that the model survives up to time n. We prove that if the
r-point functions scale to those of the canonical measure of super-Brownian motion, and if certain
self-repellence and total-population tail-bound conditions are satisfied, then nθn → 2/(AV ), where A
is the asymptotic expected number of particles alive at time n, and V is the vertex factor of the model.
Our results apply to spread-out lattice trees above 8 dimensions, spread-out oriented percolation above
4 + 1 dimensions, and the spread-out contact process above 4 + 1 dimensions. In the case of oriented
percolation, this reproves a result by the first author, den Hollander and Slade (that was proved using
heavy lace expansion arguments), at the cost of losing explicit error estimates. We further derive
several consequences of our result involving the scaling limit of the number of particles alive at time
proportional to n. Our proofs are based on simple weak convergence arguments.

1 Introduction and results

A celebrated result by Kolmogorov [42] states that the probability θn that a Galton-Watson branching
process with offspring distribution having mean 1 and variance γ, starting from a single initial particle,
survives until time n satisfies nθn → 2/γ as n → ∞ (see also [51, Theorem II.1.1]). A related classical
result by Yaglom [55] states that the population size Nn at time n is such that, conditional on survival up
to time n, the random variable n−1Nn converges weakly to a random variable Y having an exponential
distribution with mean γ/2. Thus, the probability of survival up to time n decays like 1/n, while on the
event of survival, the number of particles alive grows proportional to n. In this paper, we study extensions
of this result, and their ramifications, to general spatial statistical mechanical models in sufficiently high
dimensions.

We next define the scaling limit of the particle numbers for critical Galton-Watson trees. The prob-
ability of the population surviving is rather small, and in the literature, two constructions have been
investigated to resolve this problem. The first construction to deal with the vanishing survival probability
is to start with a large number of particles, i.e., take N0 = dnxe, where x > 0. In this case, at any time
t > 0, the number of particles at time 0 whose lineage survives until time t has an approximate Poisson
distribution with parameter 2x/γ. Then, the process (Ntn/n)t≥0 converges in distribution to Feller’s
branching diffusion [19], which is the unique solution to a stochastic differential equation describing a
continuous-state branching process (see also [45] for related results). The second construction to deal
with the vanishing survival probability is to multiply the measure by a factor of n, making sure that
the measure of the event of survival to time proportional to n converges to a finite and positive limit.
Then, the process (Ntn/n)t≥0 converges in distribution, where the notion of convergence in distribution is
defined in terms of convergence of integrals of bounded continuous functions having support on paths that
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survive up to time ε > 0. The resulting measure is a σ-finite measure rather than a probability measure,
and is called the canonical measure of the branching process in reference to canonical measures appearing
in infinitely divisible processes (see e.g. [41]). We can retrieve a probability measure by ‘conditioning’ the
measure on surviving up to time 1.

While the two constructions are quite different, they are closely related. Indeed, in the first construc-
tion (conditionally upon survival to time 1) take any of the Poisson 2x/γ initial particles whose lineage
survives until time 1. Then the distribution of its rescaled numbers of descendants is identical to that in
the canonical measure conditioned to survive up to time 1.

The models we consider will be spatial. Embedding the branching process into Zd, with the initial
particle located at the origin, 0 ∈ Zd, and where the offspring of any given particle are independently
located at neighbors of that particle in Zd, we obtain a branching random walk. Since multiple occupancy
can occur, the state of this process at time n is best described by a (random) measure, where the measure of
any subset of Rd is the number of particles of generation n located in that set. With appropriate rescaling
of space, time, mass (associated to each particle), and of the underlying law, we obtain a sequence of
finite (no longer probability) measures µn. It is well known that the measures µn converge weakly to a
measure N0 on the space of measure valued paths (Xt)t≥0 that survive for positive time, i.e. S ≡ inf{t >
0: Xt(1) = 0} > 0 (where Xt(f) ≡

∫
fdXt). Although we have not found an explicit statement and

proof of this result, it is implicit in Watanabe [54], and is explicit in e.g. [51] in the case of branching
Brownian-motions. The measure N0 is called the canonical measure of super-Brownian motion and is
σ-finite, with N0(S > ε) = 2/ε for every ε > 0. The notion of weak convergence is defined with respect to
the finite measures Nε0(·) ≡ N0(·, S > ε) (see e.g. [40]), and in particular nθbntc → γ−1N0(S > t) = 2/(γt).
See [13, 51] for detailed surveys of super-processes and convergence towards them, and [17, 18, 47] for
introductions to super-processes and continuous-state branching processes.

In this paper, we study extensions of these results in the context of general spatial statistical mechanical
models in sufficiently high dimensions that converge (or are conjectured to converge) to super-Brownian
motion (SBM) in the sense of convergence of r-point functions. Convergence of r-point functions means
that the (rescaled) joint moments of particle numbers and locations converge (to those of SBM). The use
of r-point functions has a long history and tradition in statistical physics. The main result of this paper is
that convergence of r-point functions, subject to two conditions that are valid in all our examples, implies
that the classical results by Kolmogorov, Yaglom and (to some extent) Feller hold as well. As such, our
result confirms that convergence of r-point functions is a relevant and important notion (see also [40]).

Let us introduce the general setting that we investigate. Let P denote the probability measure de-
scribing the law of our model. In contrast to the branching random walk setting, all our models are of
single-occupancy type, and have a notion of intrinsic distance, in which x

n−→ y means that the shortest
path between x and y has length n. Let Z+ = {0, 1, 2, . . . } and R+ = [0,∞). Then for ~x ∈ Zd(r−1) and
~n ∈ Zr−1+ (or ~n ∈ Rr−1+ for models where time is continuous), we let

t(r)~n (~x) = P(0
ni−→ xi ∀i = 1, . . . , r − 1) (1.1)

denote the r-point function in the model. Further, for ~k = (k1, . . . , kr−1) ∈ ([−π, π]d)r−1, we let

t̂(r)~n (~k) =
∑

~x∈Zd(r−1)

ei
~k·~xt(r)~n (~x) (1.2)

denote its Fourier transform, and
θn = P(∃x ∈ Zd : 0

n−→ x) (1.3)

the survival probability.
Let An = {x : 0

n−→ x}, Nn = #{x : 0
n−→ x} = #An, and Sn = {Nn > 0} = {An 6= ∅}, so that

θn = P(Sn). Here #A denotes the number of elements in A. When the underlying model is defined in
discrete time, we define n~t to be the vector (bnt1c, . . . , bntrc).
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In this paper, we investigate the asymptotics of the survival probability, assuming the asymptotic
behavior of the r-point functions. These results apply to branching random walk in all dimensions, as
well as to (a) lattice trees; (b) oriented percolation; and (c) the contact process, all above their (model-
dependent) upper critical dimension, where the general philosophy in statistical physics suggests that these
models behave like branching random walk. In particular, when the allowed connections are sufficiently
spread out, e.g. where all vertices within distance L � 1 of a vertex are considered to be neighbors of
that vertex, the following condition holds as a theorem for each of these models, above their respective
upper critical dimensions:

Condition 1.1 (Convergence of the r-point functions). (a) There exist constants A, V > 0 both depending

on L such that for each r ≥ 2 and ~t ∈ R(r−1)
+ ,

1

A(V A2n)r−2
t̂(r)
n~t

(0)→ M̂ (r−1)

~t
(0), as n→∞, (1.4)

where the quantities M̂ (r−1)

~t
(0) are the joint moments of the total mass at times t1, . . . , tr−1 of the canonical

measure of SBM. In particular, M̂ (r−1)

t~1r−1
(~0) = tr−22−(r−2)(r − 1)!.

(b) There exist constants A, V, v > 0 all depending on L such that for each r ≥ 2, ~t ∈ R(r−1)
+ , and

~k ∈ Rd(r−1),

1

A(V A2n)r−2
t̂(r)
n~t

(
~k√
vn

)
→ M̂ (r−1)

~t
(~k), as n→∞, (1.5)

where the quantities M̂ (r−1)

~t
(~k) are the Fourier transforms of the moment measures of the canonical mea-

sure of SBM.

Condition 1.1(a) is the weaker of the above conditions, and can be rephrased as

nE
[ r−1∏
i=1

(
Ntin/n

)]
→ A(V A2)r−2M̂ (r−1)

~t
(0), (1.6)

where M̂ (r−1)

~t
(0) are the limits of the joint moments of population sizes of critical branching processes

with variance one offspring distributions. Note that the convergence in (1.6) makes no assumption on the
spatial locations of the particles involved, however the evolution of Nn is affected by spatial interaction
present in our models. Condition 1.1(b), which contains (a), can be rephrased as

Eµn

r−1∏
j=1

X(n)

tj
(φkj )

→ EN0

r−1∏
j=1

Xtj (φkj )

 , (1.7)

where φkj (x) = eikj ·x for kj ∈ Rd and x ∈ Zd, and where

X(n)

t (f) =
1

V A2n

∑
x∈Ant

f(x/
√
vn), and µn(·) = nV AP(·). (1.8)

Thus, Condition 1.1(b) states that certain moment measures of the rescaled processes under the measure
µn converge to those of the canonical measure of SBM. Condition 1.1(b) is the condition that is typically
proved in the literature.

Before stating our main result, let us formulate two further conditions. Recall the definitions of An
and Nn following (1.3). Let |N | denote the total population size, i.e.,

|N | =
∫ ∞
0

Ntdt, (1.9)
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which is equivalent to |N | =
∑

n≥0Nn for discrete-time models. We make two central assumptions on
our high-dimensional models:

Condition 1.2 (Cluster tail bound). There exists a constant CN such that

P(|N | ≥ k) ≤ CN/
√
k. (1.10)

Condition 1.3 (Self-repellent survival property). Let Fm be the σ-field generated by the vertices at
distance at most m from 0, i.e. by {(x, n) : 0

n−→ x, n ≤ m}. Then there exists a constant Cθ such that,
almost surely for every stopping time M ≤ n,

P(AM −→ n | FM ) ≤ CθNMθn−M . (1.11)

The cluster tail condition (1.10) follows from the literature for all models under consideration (as we
will show in more detail below). In the case of branching random walk with critical geometric branching,
(1.10) reduces to the return time tail for simple random walk (by Harris’s identity for branching processes,
see for example [26].)

The self-repellent survival property in (1.11) is elementary for branching random walk for which it
holds by the strong Markov property, due to the independence of the offspring of particles alive at time
M , which implies that

P(AM −→ n | FM ) = 1− (1− θn−M )NM ≤ NMθn−M . (1.12)

It is not much harder to verify for our models (again, see below). The first of our main results is the
following theorem:

Theorem 1.4. When Conditions 1.1(a), 1.2 and 1.3 hold, as n→∞,

nθn → 2/(AV ), (1.13)

and consequently for each t > 0,

µn(X(n)

t (1) > 0)→ N0(Xt(1) > 0) = 2/t. (1.14)

Moreover, as n→∞ the rescaled total mass process (X(n)
s (1))s≥0 under µn converges (in the sense of finite-

dimensional distributions) to the total mass (Xs(1))s≥0 of CSBM, both unconditionally and conditional
on survival up to time t (for any t > 0).

Note that conditional on survival up to time t the total mass process (Xs(1))s≥t under N0 is Feller’s
branching diffusion started from an exponential random variable with mean t/2, so this says that con-
ditionally on Ntn > 0, {Nsn/n}s≥t converges in the sense of finite-dimensional distributions to Feller’s
branching diffusion started from an exponential random variable with mean A2V t/2.

For oriented percolation, Theorem 1.4 contains the result from [30, 31] (but without the error esti-
mates). See also [43, 44, 53] for related results on survival probabilities. Our set-up is rather general,
so that in the future, it might be applicable to other models, such as percolation, the voter model and
lattice animals above their respective upper critical dimensions as well.

Theorem 1.4 is particularly important, since the combination of the convergence of the r-point func-
tions (as formulated in Condition 1.1(b)) and Theorem 1.4 imply that {µn}n≥1 converge in the sense of
finite-dimensional distributions to N0 (see [40]). This is the second of our main results:

Theorem 1.5. When Conditions 1.1(b), 1.2 and 1.3 hold, the finite-dimensional distributions of the
process (X(n)

s )s≥0 under µn converge to those of (Xs)s≥0 under the measure N0. The same is true under
the measures conditioned on survival up to time t, for each t > 0.

4



We now present our 3 main examples, which all involve a function D : Zd → [0, 1], with
∑

x∈Zd D(x) =
1. In order to apply our main result to these examples, we make the additional assumption, under which
Condition 1.1 is verified in the literature (see below for precise references), that

D(x) =
h(x/L)∑
x∈Zd h(x/L)

, (1.15)

where L is large, and h is a non-negative bounded function on Rd which is piecewise continuous, symmetric
under the Zd-symmetries of reflection in coordinate hyperplanes and rotation by π/2, supported in [−1, 1]d,
and normalised (

∫
[−1,1]d h(x)ddx = 1). A basic example of where this holds is D(x) = ((2L + 1)d −

1)−11{0<‖x‖∞≤L}, i.e. D is the uniform distribution on a box of radius L excluding the origin.

Spread-out lattice trees above 8 dimensions. A lattice tree is a finite connected set of lattice bonds
(and their associated end vertices) containing no cycles. For fixed z > 0, every such tree T 3 0 with
bond set B is assigned a weight Wz(T ) = z|B|

∏
(x,y)∈B D(y − x), and we define ρz(x) =

∑
T30,xWz(T ).

The radius of convergence zc of
∑

x∈Zd ρz(x) is finite. Let W (·) = Wzc(·) and ρ = ρzc(0). We define
a probability measure on the (countable) set of lattice trees containing the origin by P(T ) = W (T )/ρ.
Given a lattice tree T 3 0, we define An(T ) = {a1, . . . , aNn} to be the (ordered) set of vertices in T of
tree distance n ∈ Z+ from the origin under some arbitrary but fixed ordering of Zd.

Condition 1.1 is the main result in [39]. Condition 1.2 follows from the detailed asymptotics for
P(|T | = n) ∼ cn−3/2 proved in [14, 15], where |T | denotes the number of vertices in the lattice tree
T . We next check Condition 1.3, for which it is enough to show that the result holds a.s. for every
deterministic time m ≤ n. Letting Tm denote the tree up to tree distance m from the root, we have that
P(Am −→ n | Tm = τm) is equal to

W (τm)∑
T : Tm=τm

W (T )

∑
R13a1

· · ·
∑

RNm3aNm

Nm∏
i=1

W (Ri)1{Ri avoid each other and τm}1{∪j{Rj survives at least until n−m}},

where
∑

R3a is a sum over lattice trees R rooted at a ∈ Zd (with survival measured in terms of tree
distance from a), and we recall that Am = {a1, . . . , aNm}.

The final indicator function is bounded above by
∑

j 1{SRj≥n−m}
, where SR is the survival time of R.

By taking the sum over j outside and dropping the restriction that Rj avoids other Ri and τm, this is
bounded above by

Nm∑
j=1

∑
Rj3aj

W (Rj)1{SRj≥n−m}

[
W (τm)∑

T : Tm=τm
W (T )

(1.16)

×
∑
R13a1

· · ·
∑

Rj−13aj−1

∑
Rj+13aj+1

· · ·
∑

RNm3aNm

∏
i 6=j

W (Ri)1{Ri,i 6=j avoid each other and τm}

]

≤
Nm∑
j=1

∑
Rj3aj

W (Rj)1{SRj≥n−m}
= Nmρθn−m,

where we have used the fact that the interaction term makes the graph τm ∪i 6=j Ri a lattice tree T with
Tm = τm, and weight W (T ) = W (τm)

∏
i 6=jW (Ri), so the numerator in brackets is no more than the

denominator. Since ρ = ρzc(0) <∞ [23], this verifies Condition 1.3.

Spread-out contact process above 4 + 1 dimensions. We define the spread-out contact process as
follows. Let Cn ⊂ Zd be the set of infected individuals at time n ∈ R+, and let C0 = {0}. An infected site
x recovers in a small time interval [n, n+ ε] with probability ε+ o(ε) independently of n, where o(ε) is a
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function that satisfies limε→0 o(ε)/ε = 0. In other words, x ∈ Cn recovers at rate 1. A healthy site x gets
infected, depending on the status of its neighbors, at rate λ

∑
y∈Cn D(x− y), where λ ≥ 0 is the infection

rate. We denote by Pλ the associated probability measure.
By [21], which extends the results in [3] to the spread-out contact process, there exists a unique critical

value λc ∈ (0,∞) such that

θ(λ) ≡ lim
n→∞

Pλ(Cn 6= ∅)

{
= 0, if λ ≤ λc,
> 0, if λ > λc,

(1.17)

and we define
θn = θn(λc) = Pλc(Cn 6= ∅). (1.18)

Condition 1.1 is proved in [33, 34]. Condition 1.2 holds by [1, 33, 34, 52], while Condition 1.3 morally
follows from a union bound and the strong Markov property. To be precise, let the infected particles at
time M be written as AM = {x1, . . . , xNM } (according to some fixed but arbitrary ordering). Relabel the
infection at each x ∈ AM to be 1x, so that there are now NM different infections {1x1 , . . . , 1xNM } at time
M (these labels are fixed thereafter). Let this modified process evolve as before, except that a site may
carry more than one of the M distinct infections. When one particle infects another it passes all of its
infections onto that particle, and whenever a particle recovers (rate 1), it recovers from all its infections
simultaneously. Then,

P(AM −→ n | FM ) =P(∪x∈AM {infection 1x survives until time n} | FM )

≤
∑
x∈AM

P({infection 1x survives until time n} | FM ).

However, any one of the infections {1x1 , . . . , 1xNM } spreads according to the ordinary contact process
dynamics, so the latter probability is θn−M , i.e.,

P(AM −→ n | FM ) ≤
∑
x∈AM

θn−M = NMθn−M .

Convergence of the spread-out contact process to super-Brownian motion is proved in [16] in the setting
where the range of the contact grows with the time until which the contact process is being considered.

Spread-out oriented percolation above 4 + 1 dimensions. The spread-out oriented bond perco-
lation model is defined as follows. Consider the graph with vertices Zd × Z+ and with directed bonds
((x, n), (y, n + 1)), for n ∈ Z+ and x, y ∈ Zd. Let p ∈ [0, ‖D‖−1∞ ], where ‖ · ‖∞ denotes the supremum
norm, so that pD(x) ≤ 1 for all x ∈ Zd. We associate to each directed bond ((x, n), (y, n + 1)) an inde-
pendent random variable taking the value 1 with probability pD(y − x) and the value 0 with probability
1− pD(y − x). We say that a bond is occupied when the corresponding random variable is 1 and vacant
when it is 0. The joint probability distribution of the bond variables will be denoted by Pp, and the
corresponding expectation by E p.

We say that (x, n) is connected to (y,m), and write (x, n) −→ (y,m), if there is an oriented path
from (x, n) to (y,m) consisting of occupied bonds. Note that this is only possible when m ≥ n. By
convention, (x, n) is connected to itself. We write (x, n) −→ m if m ≥ n and there is a y ∈ Zd such that
(x, n) −→ (y,m). The event {(0, 0) −→ ∞} is the event that {(0, 0) −→ n} occurs for all n. There is
a critical threshold pc > 0 such that the event {(0, 0) −→ ∞} has probability zero for p < pc and has
positive probability for p > pc. The survival probability at time n is defined by

θn(p) = Pp((0, 0) −→ n), (1.19)

and we let θn = θn(pc). General results of [3, 21] imply that limn→∞ θn = 0.
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Then, for P = Ppc , Condition 1.1 is proved in [37]. Condition 1.2 holds by [2, 37, 49, 50], while
Condition 1.3 follows from a union bound and the strong Markov property, via the same argument as for
the contact process.

Our main results can be restated in terms of the above models as follows:

Theorem 1.6. Let L� 1, and let d > 4 for oriented percolation and the contact process, and d > 8 for

lattice trees. Then, with A, V, v > 0 all depending on L such that for each ~t ∈ R(r−1)
+ and ~k ∈ R(r−1)

1

A(V A2n)r−2
t̂(r)
n~t

(
~k/
√
vn
)
→ M̂ (r−1)

~t
(~k), as n→∞, (1.20)

the asymptotics

nθn → 2/(AV ) and µn(X(n)

t (1) > 0)→ N0(Xt(1) > 0) = 2/t, as n→∞, (1.21)

hold. As a consequence, the finite-dimensional distributions of the process (X(n)
s )s>0 under µn converge

to those of (Xs)s>0 under the measure N0, and similarly for the measures conditioned on survival up to
time t for any t > 0.

In work in progress [32] and jointly with Ed Perkins, we prove a tightness result for spread-out lattice
trees in dimensions d > 8. Together with Theorem 1.5 and under the same conditions, this proves weak
convergence of lattice trees to super-Brownian in the sense of measure-valued processes.

We close this section with some possible extensions to our results.

Long-range models. In all our models, we assume that D has finite range (in some cases this can
be weakened to finite spatial variance), so that SBM can arise as the scaling limit. In the literature,
long-range models have attracted considerable attention. See [7, 8, 9] for results on long-range oriented
percolation, [27] for long-range self-avoiding walk, and [28] for percolation, self-avoiding walk and the Ising
model. In long-range models, the random walk step distribution D has infinite variance. The simplest
example arises when

D(x) =
(1 + |x|/L)−(d+α)∑
y∈Zd(1 + |y|/L)−(d+α)

, x ∈ Zd, (1.22)

where α ∈ (0, 2), and |x| denotes the Euclidean norm of x ∈ Zd. The results in [7, 8, 9] suggest that the
upper critical dimension of oriented percolation equals 2α, while [28] indicates that it is 3α for percolation,
and 2α for self-avoiding walk and the Ising model.

We believe that Condition 1.1(a) holds for these models above their respective upper critical dimen-
sions. Once this is proved, Theorem 1.4 then implies convergence of the survival probability in each
case. However, random walk with step distribution D converges to α-stable motion rather than Brown-
ian motion, a fact that is proved to hold for self-avoiding walk above 2α dimensions in [27]. Therefore,
Condition 1.1(b) does not hold, and should be replaced with convergence towards the canonical measure
of super-stable motion.

By considering branching random walks, where the population size process is independent of the
random walk step-distribution, it is easy to see that the law of the total mass process under the canonical
measure of super-stable motion is the same as under N0. Thus by [40, Theorem 2.6], in the long-range
setting, convergence of the r-point functions and the survival probability still implies convergence in the
sense of finite-dimensional distributions. Therefore to prove a version of Theorem 1.5 in the long-range
setting, it is sufficient to prove the convergence of the r-point functions in Condition 1.1(b).
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Voter model. In this model we start at time 0 with a single site (the origin) having opinion 1 and all
other sites having opinion 0. Each site has a (standard) Poisson clock and when the clock rings the site
adopts the opinion of a random neighbour.

The voter model and its connections to super-Brownian motion have received substantial attention in
the literature. The survival probability asymptotics are known in all dimensions, with (1.13) holding in
dimensions d ≥ 3 [6]. See [48] for a general introduction to particle systems including the voter model,
and [5, 10, 11] for convergence of rescaled voter models to super-Brownian motion.

Our proof might simplify the analysis of the survival probability for this model, although we have
not found a statement of Condition 1.2 in the literature. As for the contact process, it is easy to verify
Condition 1.3 for this model. Let AM = {x1, . . . , xNM } denote the particles with opinion 1 at time M
and relabel the opinion at each x ∈ AM to be 1x, so that there are now NM + 1 different opinions
{0, 1x1 , . . . , 1xNM } at time M . Letting the process evolve as a voter model with NM + 1 different opinions
(each particle having exactly one opinion) we again have

P(AM −→ n | FM ) ≤
∑
x∈AM

P({opinion 1x survives until time n} | FM ) =
∑
x∈AM

θn−M = NMθn−M ,

since the dynamics of a single type of opinion are those of the ordinary voter model. Thus, Condition
1.3 follows. While Condition 1.1 is unknown, closely related estimates have been obtained in [46] via the
duality between the voter model and coalescing random walks.

Spread-out percolation above 6 dimensions. For a general introduction to percolation, we refer
to [20]. We now introduce the model that we consider. Let p ∈ [0, ‖D‖−1∞ ] be a parameter. We declare
a bond {u, v} to be occupied with probability pD(v − u) and vacant with probability 1 − pD(v − u).
The occupation status of all bonds are independent random variables. The law of the configuration of
occupied bonds (at the critical percolation threshold) is denoted by Ppc with corresponding expectation

denoted by Epc . Given a configuration we say that x is connected to y, and write x
n−→ y, if there is a

path of occupied bonds from x to y, and the path with the minimal number of bonds connecting x and
y has precisely n edges.

For percolation, Condition 1.1 is not known. Condition 1.2 follows from [22] together with [2], see also
[24, 25]. A form of Condition 1.3 can be established in a similar way as for lattice trees above. Evaluating
the cluster up to generation m, we have observed a set of open edges Tm in our cluster of generation ≤ m,
as well as a corresponding set of closed edges incident to those edges. Let Tm be the union of these edges.
Then

P(Am → n|Fm) = P
(
∪

x∈Am
{x survives at least n−m in T

c
m} | Fm

)
,

since Am ⊂ Tm contains all ancestors of generation m of all vertices of generation n. It is tempting to now
conclude Condition 1.3 from a union bound and by dropping the restriction that the connections occur
outside Tm. Unfortunately, the function θn is not monotone in the graph on which we perform percolation.
Indeed, for a set of edges B, it is not true that P(0 survives at least n in Bc) ≤ θn. This was cleverly
resolved by Kozma and Nachmias [43] by instead studying θn = supB P(0 survives at least n in Bc), for
which the proof of Theorem 2.1 does apply. Since θn ≤ θn, this does imply the fact that nθn is bounded.
It is straightforward to check that this strategy can also be applied to the proof of Theorem 1.4 below.
As a result, for percolation, our results hold as soon as Condition 1.1 is proved, even though this proof is
substantially more subtle than the proof for lattice trees, the contact process and oriented percolation.

The above discussion suggests the following research program to identify the right constants in arm-
probabilities in high-dimensional percolation, both in the intrinsic as well as in the Euclidean or extrinsic
distance: (1) prove the convergence of the r-point functions in Condition 1.1(b) (from which the right
constant in the survival probability or intrinsic one-arm probability would follow, improving upon the
results in [43]); (2) prove tightness for convergence towards SBM; (3) identify the right constant for the
extrinsic one-arm probability, improving upon the result in [44]. For the last step, an important ingredient
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showing that it is unlikely that a short path exists to the boundary of a Euclidean ball is proved in [35,
Theorem 1.5].

The remainder of this paper is organized as follows. In Section 2, we prove an upper bound on θn that
is of the correct order, but with the wrong constant. In Section 3, we use weak-convergence arguments
to identify the correct constant, and prove the consequences of convergence of the survival probability.

2 Weak upper bound on the survival probability

The following theorem gives a weak upper bound on the survival probability.

Theorem 2.1. When Conditions 1.2 and 1.3 hold, there exists a constant c+ such that

θn ≤ c+/n. (2.1)

Proof. We follow [43], where a similar bound was proved for the intrinsic one-arm in percolation. We
split θ4n into two parts,

θ4n = P(Nm ≥ εn ∀m ∈ [n, 3n], 0 −→ 4n) + P(∃m ∈ [n, 3n] : Nm < εn, 0 −→ 4n). (2.2)

We can bound the first probability using (1.10), since |N | ≥ 2εn2 if Nm ≥ εn for all m ∈ [n, 3n]. Therefore,

P(Nm ≥ εn ∀m ∈ [n, 3n], 0 −→ 4n) ≤ P(|N | ≥ 2εn2) ≤ CN

n
√

2ε
. (2.3)

In the second probability in (2.2), we let J ≥ n be the first m ∈ [n, 3n] such that 0 < Nm < εn, and we
condition on FJ = σ((Am)m≤J). Then, by (1.11),

P(AJ −→ 4n | FJ) ≤ NJCθθn ≤ εnCθθn. (2.4)

As a result,

P(∃m ∈ [n, 3n] : Nm < εn, 0 −→ 4n) = E[1{n≤J≤3n}P(AJ −→ 4n | FJ)] ≤ εCθnθ2n, (2.5)

where we use the fact that n ≤ J implies that 0 −→ n. Thus, we end up with the inequality

θ4n ≤
CN

n
√

2ε
+ εCθnθ

2
n. (2.6)

Take ε = c
−4/3
2 and take c2 > 1 so large that

2−
1
2CNc

2/3
2 + Cθc

2/3
2 ≤ c2/4. (2.7)

Then, it is easy to prove by induction that θ4k ≤ c24−k for every k ≥ 1. By monotonicity of n 7→ θn, this
immediately implies that θn ≤ (4c2)/n. This completes the proof of Theorem 2.1. �

3 Identifying the constant: Proof of Theorem 1.4

In this section, we make use of general weak convergence arguments to prove that nθn → 2/(AV ). We
rely on a result that is essentially a special case of [40, Proposition 2.3], which requires the introduction of
some more notation. Let MF (Rd) (resp. M1(Rd)) denote the space of finite (resp. probability) measures
on Rd equipped with the topology of weak convergence. Let DG denote the set of discontinuities of a
function G, and D(E) denote the space of càdlàg E-valued functions with the Skorohod topology. When
we say that µ is a measure on (a topological space) E, this means that it is a measure with respect to
the Borel σ-algebra on E.
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Lemma 3.1. Suppose that Condition 1.1(a) holds. Then for every s, t, η > 0, and every bounded Borel
measurable H : R→ R such that N0(Xt(1) ∈ DH) = 0,

Eµn
[
1{X(n)

s (1)>η}H(X(n)

t (1))
]
→ EN0

[
1{Xs(1)>η}H(Xt(1))

]
, as n→∞. (3.1)

Proof. We follow the proof of [40, Proposition 2.3]. For convenience, we drop the superscripts (n).
By Condition 1.1(a), {µn}n≥1 is a sequence of finite measures on D(MF (Rd)) such that for every r ≥ 1

and ~t ∈ [0,∞)r, (1.7) holds when φkj = 1 for each j.
Fix s, t, η > 0. Let Ys = Xs(1), and define Pn = Pn,s,t ∈M1(R2) and P = Ps,t ∈M1(R2) by

Pn(A) =
Eµn [Ys1{(Ys,Yt)∈A}]

Eµn [Ys]
, and P (A) =

EN0 [Ys1{(Ys,Yt)∈A}]

EN0 [Ys]
,

where these measures are well defined since

Eµn [Ys]→ EN0 [Ys] ∈ (0,∞).

On each of these spaces let (W,Z) be the canonical random vector, i.e. (W,Z)(ω1, ω2) = (ω1, ω2). Then,
for every m1,m2 ≥ 0,

EPn [Wm1Zm2 ] =
Eµn

[
Y m1+1
s Y m2

t

]
Eµn [Ys]

→
EN0

[
Y m1+1
s Y m2

t

]
EN0 [Ys]

= EP [Wm1Zm2 ] , (3.2)

i.e., the moments of (W,Z) under Pn converge to those under P .
Furthermore (see e.g. [40, Lemma 4.1]) there exists δ > 0 such that,

EP
[
eδ(W+Z)

]
=

EN0

[
Ys eδ(Ys+Yt)

]
EN0 [Ys]

<∞, (3.3)

i.e., the moment generating function of (W,Z) under P is finite in a neighborhood of (0, 0). It then follows
(see e.g. [4, Theorems 30.1 and 30.2, and Problems 30.5 and 30.6]) that Pn converges weakly to P , and
therefore for G : R2 → R bounded and such that P ((W,Z) ∈ DG) = 0,

EPn [G(W,Z)]→ EP [G(W,Z)].

In other words, for each bounded G : R2 7→ R such that N0((Ys, Yt) ∈ DG) = 0,

Eµn [YsG(Ys, Yt)]→ EN0 [YsG(Ys, Yt)] .

Let H be as in the statement of the lemma, and define

GH(x, y) =

{
H(y)
x , if x > η

0, otherwise.

Then GH is bounded, and DGH = {(x, y) : y ∈ DH or x = η}, whence N0((Xs, Xt) ∈ DGH ) = 0. The
claim follows since YsGH(Ys, Yt) = 1{Ys>η}H(Yt). �

Proof of Theorem 1.4. By Theorem 2.1, we have that nθn is bounded. In order to investigate the limit of
nθn, we split, for each fixed ε > 0,

nθn = nP(Nn > εn) + nP(0 < Nn ≤ εn). (3.4)

The first term is equal to (AV )−1µn(X(n)

1 > cε), with c = (V A2)−1. From Lemma 3.1 with s = 1, η = cε
and with the continuous function H ≡ 1 (and Condition 1.1(a)), we have that the first term on the right
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converges to (AV )−1N0(X1(1) > cε), and this converges to (AV )−1N0(X1(1) > 0) = 2/(AV ) as ε → 0.
Since nP(0 < Nn ≤ εn) ≥ 0, this immediately proves that

lim inf
n→∞

nθn ≥ 2/(AV ). (3.5)

In order to identify the limit, we adapt [29, Proof of Theorem 1.5 in Section 5.3]. Let δ ∈ (0, 1)
and let {nk} = {nk(δ)} be any subsequence of N such that nkθnk → b, where b = lim supn nθn, and
(1− δ)nkθ(1−δ)nk → bδ for some bδ ≥ 2/AV . Similarly to (3.4), for δ, ε, ε′ ∈ (0, 1) we write

nkθnk = nkP(N(1−δ)nk > εnk, Nnk > ε′nk)

+nkP(N(1−δ)nk > εnk, 0 < Nnk ≤ ε
′nk) + nkP(0 < N(1−δ)nk ≤ εnk, Nnk > 0)

= Ak,δ,ε,ε′ +Bk,δ,ε,ε′ +Dk,δ,ε. (3.6)

Since the above is true for each δ, ε, ε′, it follows that also

b ≤ lim sup
δ,ε,ε′↓0

lim sup
k→∞

Ak,δ,ε,ε′ + lim sup
δ,ε,ε′↓0

lim sup
k→∞

Bk,δ,ε,ε′ + lim sup
δ,ε↓0

lim sup
k→∞

Dk,δ,ε, (3.7)

where the limits are taken in the order k →∞, ε′ ↓ 0, ε ↓ 0, δ ↓ 0.
The term Ak,δ,ε,ε′ can be rewritten as

1

AV
µnk(X

(nk)
1−δ (1) > cε,X

(nk)
1 (1) > cε′)→ 1

AV
N0(X1−δ(1) > cε,X1(1) > cε′), as k →∞,

by Lemma 3.1. Letting ε′ ↓ 0 and then ε ↓ 0 this converges to

1

AV
N0(X1−δ(1) > 0, X1(1) > 0) =

1

AV
N0(X1(1) > 0) = 2/AV,

where we use that {X1(1) > 0} ⊂ {X1−δ(1) > 0} and which, in particular, does not depend on δ.
Further, using Condition 1.3, the term Dk,δ,ε satisfies

Dk,δ,ε = nkE
[
1{0<N(1−δ)nk≤εnk}

P(Nnk > 0|F(1−δ)nk)
]
≤ Cθεnkθδnknkθ(1−δ)nk ≤

Cε

δ(1− δ)
,

uniformly in k, since nθn is bounded above uniformly in k. Letting ε ↓ 0, this converges to 0.
We are left to investigate Bk,δ,ε,ε′ , for which we define, for each m, the measure Qm = P(· | Nm > 0).

Then, we can rewrite

Bk,δ,ε,ε′ = nkθ(1−δ)nkQ(1−δ)nk(N(1−δ)nk > εnk, 0 < Nnk ≤ ε
′nk).

Thus, since nkθ(1−δ)nk is bounded above by C
1−δ ≤ 2C for δ < 1

2 (where C is independent of δ), proving
that lim supδ,ε,ε′↓0 lim supk→∞Bk,δ,ε,ε′ = 0 is equivalent to proving that

lim sup
δ,ε,ε′↓0

lim sup
k→∞

Q(1−δ)nk(N(1−δ)nk > εnk, 0 < Nnk ≤ ε
′nk) = 0. (3.8)

To prove (3.8), we note that, for any integers `1, `2 ≥ 0 such that `1 + `2 ≥ 1,

EQ(1−δ)nk

[(
N(1−δ)nk/nk

)`1(
Nnk/nk

)`2]
=

1

θ(1−δ)nk
E
[(
N(1−δ)nk/nk

)`1(
Nnk/nk

)`2]
(3.9)

=
1

nkθ(1−δ)nk
n
−(`1+`2−1)
k E[N `1

(1−δ)nkN
`2
nk

]

=
1

nkθ(1−δ)nk
n
−(`1+`2−1)
k t̂

(`1+`2+1)

~nk
(0),
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where we use that N(1−δ)nk > 0 when Nnk > 0, and where ~nk denotes a vector with precisely `1 coordinates
equal to (1− δ)nk and `2 coordinates equal to nk. By Condition 1.1(a),

n
−(`1+`2−1)
k t̂

(`1+`2+1)

~nk
(0)→ A(V A2)`1+`2−1EN0

[
X1−δ(1)`1X1(1)`2

]
(3.10)

=
2

AV (1− δ)
EN0

[(
V A2X1−δ(1)

)`1(
V A2X1(1)

)`2∣∣∣X1−δ(1) > 0

]
,

where the last equality follows from the fact that N0(X1−δ(1) > 0) = 2/(1 − δ). Therefore, also using
that (1− δ)nkθ(1−δ)nk → bδ,

EQ(1−δ)nk

[(
N(1−δ)nk/nk

)`1(
Nnk/nk

)`2]
→ 2

AV bδ
EN0

[(
V A2X1−δ(1)

)`1(
V A2X1(1)

)`2∣∣∣X1−δ(1) > 0

]
.

(3.11)

We recognize the above joint moments as the joint moments of (X,Y ) with distribution (1−αδ)δ(0,0)+αδνδ,
where δ(0,0) is the point measure on the vector (0, 0) and νδ is the law of (A2V X1−δ(1), A2V X1(1)) under
N0(·|X1−δ(1) > 0), and with αδ = 2/(AV bδ) ∈ [0, 1] (due to the lower bound (3.5)). For any t > 1− δ,

N0(Xt(1) = 0|X1−δ(1) > 0) = 1− (1− δ)/t, (3.12)

so that
νδ(X1(1) = 0) = 1− (1− δ) = δ. (3.13)

Let (Xn, Yn) be a two-dimensional distribution. Again by [4, Theorems 30.1 and 30.2, and Problems
30.5 and 30.6], convergence of the joint moments of (Xn, Yn) to those of (X,Y ) implies convergence in
distribution when the moment generating functions of both X and Y are finite in a neighborhood of
0. Under the conditional law N0(·|X1−δ(1) > 0), the distribution of A2V X1−δ(1) is exponential with
mean (1− δ)A2V/2 (see e.g., [29, Theorem 1.4]), and by (3.13), A2V X1(1) is 0 with probability δ and an
exponential with mean A2V/2 with probability 1−δ. As a result, the distribution of both limits X and Y
are mixtures of point masses at 0 with probabilities 1−αδ and 1−αδ+αδδ and exponentials with positive
means λX and λY . Therefore, their moment generating functions are finite in a neighborhood of zero,
so that under Q(1−δ)nk ,

(
N(1−δ)nk/nk, Nnk/nk

)
converges in distribution to (X,Y ) having distribution

(1− αδ)δ(0,0) + αδνδ.
Thus, as k →∞,

Q(1−δ)nk(N(1−δ)nk > εnk, Nnk ≤ ε
′nk)→ αδνδ(A

2V X1−δ(1) > ε,A2V X1(1) ≤ ε′).

When ε′ ↓ 0,

νδ(A
2V X1−δ(1) > ε,A2V X1(1) ≤ ε′)→ νδ(X1−δ(1) > εc,X1(1) = 0) ≤ νδ(X1(1) = 0) = δ, (3.14)

where we use (3.13). Letting δ ↓ 0, we obtain (3.8). We conclude that lim supn→∞ nθn = b̄ ≤ 2/(AV ),
which, together with (3.5), shows that limn→∞ nθn = 2/(AV ), as required.

The fact that, conditionally on X(n)

t (1) > 0, the finite-dimensional distributions of (X(n)
s (1))s≥0 con-

verge to those of the total mass of CSBM conditionally on Xt(1) > 0 can be obtained as follows. Again
by [4, Theorems 30.1 and 30.2, and Problems 30.5 and 30.6], for the convergence under the conditional
measures it is enough to show that for ` ≥ 0, ~s ∈ [0,∞)` and t > 0,

Eµn

[∏̀
i=1

Xsi(1)
∣∣∣S > t

]
→ EN0

[∏̀
i=1

Xsi(1)
∣∣∣S > t

]
. (3.15)

Since we have already shown convergence of the survival probabilities, it is sufficient to show that∣∣Eµn [Y~s1{S>t}]− EN0 [Y~s1{S>t}]
∣∣→ 0, (3.16)

where Y~s =
∏`
i=1Xsi(1) and ` > 0, and trivially this implies the unconditional version of the statement

as well. Finally, (3.16) can be proved exactly as in [40, proof of Prop. 2.4] �
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Poincaré Probab. Stat., 47(1):20–42, (2011).

[28] M. Heydenreich, R. van der Hofstad, and A. Sakai. Mean-field behavior for long- and finite range
Ising model, percolation and self-avoiding walk. J. Statist. Phys., 132(5):1001–1049, (2008).

[29] R. van der Hofstad, F. den Hollander, and G. Slade. Construction of the incipient infinite cluster for
spread-out oriented percolation above 4+1 dimensions. Comm. Math. Phys., 231:435–461, (2002).

[30] R. van der Hofstad, F. den Hollander, and G. Slade. The survival probability for critical spread-out
oriented percolation above 4+1 dimensions. I. Induction. Probab. Theory Related Fields, 138(3-
4):363–389, (2007).

[31] R. van der Hofstad, F. den Hollander, and G. Slade. The survival probability for critical spread-out
oriented percolation above 4+1 dimensions. II. Expansion. Ann. Inst. H. Poincaré Probab. Statist.,
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Birkhäuser, Basel, (1999).

[48] T. M. Liggett. Stochastic interacting systems: contact, voter and exclusion processes, volume 324
of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences]. Springer-Verlag, Berlin, (1999).

[49] B.G. Nguyen and W-S. Yang. Triangle condition for oriented percolation in high dimensions. Ann.
Probab., 21:1809–1844, (1993).

[50] B.G. Nguyen and W-S. Yang. Gaussian limit for critical oriented percolation in high dimensions. J.
Stat. Phys., 78:841–876, (1995).

[51] E. Perkins. Dawson-Watanabe Superprocesses and Measure-valued Diffusions. Lectures on Probability
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